1. Anderson, P. et al. An undergraduate degree in data science: Curriculum and a decade of implementation experience // SIGCSE 2014 — Proceedings of the 45th ACM Technical Symposium on Computer Science Education. 2014. P. 145−150.
2. Baumer, B. S. A data science course for undergraduates: Thinking with data // The American Statistician. 2015. No. 69. P. 334−342.
3. Bryant, C. et al. A middle-school camp emphasizing data science and computing for social good // SIGCSE 2019 — Proceedings of the 50th ACM Technical Symposium on Computer Science Education. 2019. P. 358−364. DOI:10.1145/3 287 324.3287510.
4. Bonaventura, M., Ciotti, V. et al. Predicting success in the worldwide start-up network. 2019.
5. Cirillo, P., Taleb, N. The Decline of Violent Conflicts: What Do The Data Really Say?
SSRN Electronic Journal. 2016. DOI:
10.2139/ssrn.2 876 315.
6. Cirillo, P., Taleb, N. What are the chances of a third world war? Real World Risk Institute Working Paper Series. 2016. DOI:
10.1111/j.1740−9713.2016.903.x.
7. Datta, S., Nagabandi, V. Integrating data science and R programming at an early stage // IEEE 4th International Conference on Soft Computing and Machine Intelligence, ISCMI 2017. 2018. P. 1−5. DOI:10.1109/ISCMI.2017.8 279 587.
8. De Veaux, R., Curriculum guidelines for undergraduate programs in data science // Annual Review of Statistics and Its Application. 2017. Vol. 4. No 1. P. 15−30.
9. Dryer, A., Walia, N., Chattopadhyay, A. A middle-school module for introducing data-mining, big data, ethics and privacy using rapidminer and a Hollywood theme // SIGCSE 2018 — Proceedings of the 49th ACM Technical Symposium on Computer Science Education. 2018. P. 753−758. DOI:10.1145/3 159 450.3159553.
10. Finzer, W. The data science education dilemma // Technology Innovations in Statistics Education. 2013. Vol. 7. No. 2.
11. Gibson, J. P., Mourad T. The growing importance of data literacy in life science education // American Journal of Botany. 2018. Vol. 105. No 12. P. 1−4.
12. Heinemann, B. et al. Drafting a data science curriculum for secondary schools // ACM International Conference Proceeding Series. 2018. P. 1−5. DOI:10.1145/3 279 720.3279737
13. Janosov, M., Muscioto, F. et al. Elites, communities and the limited benefits of mentorship in electronic music. 2019. DOI:
https://doi.org/10.1038/s41598−020−60 055-w.
14. Mariescu-Istodor, R., Jormanainen, I. Machine Learning Exercises for High School Students // Proceedings of the 19th Koli Calling International Conference on Computing Education Research. 2019.
15. Navarro, H., Miritello, G., Canales, A. et al. Temporal patterns behind the strength of persistent ties. EPJ Data Sci. 2017. Vol. 6. No 31. DOI:
https://doi.org/10.1140/epjds/s13688−017−0127−3.
16. Schield, M. Information literacy, statistical literacy and data literacy // IASSIST Quarterly. 2018. Vol. 28. No 2. P. 6−11.
17. Srikant, S., Aggarwal, V. Introducing data science to school kids // Proceedings of the Conference on Integrating Technology into Computer Science Education, ITiCSE. 2017. P. 561−566. DOI:10.1145/3 017 680.3017717.
18. Pangrazio, L., Sefton-Green, J. The social utility of data literacy // Learning, Media and Technology, 2019. DOI:10.1080/17 439 884.2020.1 707 223.
19. Wolff, A., Wermelinger, M., Petre, M. Exploring design principles for data literacy activities to support children’s inquiries from complex data // International Journal of Human Computer Studies. 2019. No 129(March). P. 41−54. DOI:10.1016/j.ijhcs.2019.03.006.